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Dongkwan Shin, Hüseyin Oymak and Jongbae Hong

Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea

E-mail: dkshin1@snu.ac.kr

Received 16 January 2007, in final form 13 March 2007
Published 8 May 2007
Online at stacks.iop.org/JPhysCM/19/226211

Abstract
We model a four-site tight-binding Aharonov–Bohm (AB) ring whose sites
house dispersionless Einstein phonons. The resonant tunnelling of an electron
through the AB ring in the presence of a time-periodic magnetic flux which
threads the ring is investigated. The Floquet scattering approach is followed
within the electron–phonon Fock space. The Ricatti matrix method, a
nonperturbative pruning technique, is utilized to extract the transmission
properties of the system from the time-dependent Schrödinger equation. We
observe additional satellite peaks in the total transmission graphs representing
the photon-assisted tunnelling, as well as side resonances due to the phonon-
assisted tunnelling. There happen to exist unusually stiff main transmission
peaks that are not disturbed by the strong time-periodic magnetic flux, a finding
attributed to the geometric characteristics of the AB ring.

1. Introduction

Recent advances in nanotechnologies have directed scientific attention to the study of the
electron transport through very small mesoscopic structures, such as a quantum dot, quantum
wire, and Aharonov–Bohm (AB) ring. In these systems, whose geometrical dimensions are
much smaller than the elastic mean free path, electrons are transported ballistically and many
interesting quantum coherent phenomena are observed [1]. As a standard method for probing
the coherence, many experimentalists have made use of AB interferometers, and recently there
has been a growing interest in hybrid systems composed of an AB interferometer and quantum
dots [2–5]. One of the motivations for our work comes from the fact that it is possible at the
present to embed quantum dots in the arms of AB rings, and perform quantum interference
experiments in such systems [4, 5]. Electron waves on the dots scatter, leading a phase shift
which is additional to the usual interference of the waves from the upper and lower part of the
ring.

With the rapid progress of miniaturization, molecular electronics has become a subject of
special interest in many branches of physics, chemistry, and biology [6]. A recent molecular
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experiment [7] reports that molecular vibrations significantly affect the electron transport
through a single molecule, so that electron–phonon interactions become more prominent in
very small single-molecular systems. Similarly, there appear in the literature experiments
with the aim of probing the role of inelastic scattering in electron transport through very
small single-molecular devices and semiconductor quantum dots [8, 9]. Outcomes from
these studies indicate that interactions between electrons and longitudinal optical phonons has
substantial, rather than perturbational, effects on the transport properties of the mesoscopic
device under question. Single-molecular devices, in particular, have low-energy vibrational
modes because of their notable weak elastic parameters. When the electron tunnels through the
device, the coupling between these modes and the device’s electronic states gives rise to low-
energy phonons which are readily excited even at low temperatures [8–10]. This occurrence
is referred to as phonon-assisted transport, and is one of the subjects of the present work.
There have appeared many theoretical works on quantum transport in the presence of electron–
phonon interaction; some notable examples are the treatments using the nonequilibrium Green
function approach [11, 12], a study on the phonon-assisted tunnelling in a double-barrier
resonant-tunnelling device [13], a work on the photon–phonon-assisted tunnelling through a
single-molecule quantum dot [10], and inelastic transport studies in a variety of molecular
systems [14–18]. The nonperturbative work of Bonc̆a et al [19, 20] is of special importance;
they resort to the mapping of a many-body problem onto an effective two-dimensional one-body
problem with the number of phonons as the second dimension, and then obtain the transmission
probability, within a Landauer’s picture, using a recursive pruning method.

The electron transport through a nanoscale conductor which is driven by external
sinusoidally alternating fields has been one of the most interesting subjects in recent years.
An immediate example is photon-assisted tunnelling, also among the subjects of the present
work, which has been widely investigated in a variety of mesoscopic systems [21, 22]. For a
system under the effect of a time-periodic potential with an arbitrary strength and frequency, the
Floquet approach [23–25] is especially the most convenient, for it provides essentially exact,
i.e. nonperturbative, solutions. It has seemed that, however, the Floquet scattering approach is
applicable only to effectively noninteracting Hamiltonians, and that it might not be generalized
straightforwardly to a case with additional electron–phonon interaction [26].

In this work, we present a fully nonperturbative treatment for the phonon–photon-assisted
tunnelling through an AB ring threaded by both static and oscillating magnetic fields. We build
an electron–phonon Fock space [19, 20] to deal with electron–phonon interaction, enabling
us to treat the system as a simple electronic tight-binding model with extra dimensions.
Notwithstanding the fact that there exist electron–phonon interactions in the system, we shall
demonstrate how to deal with the time-periodic external field by applying the Floquet theory
to the interacting Hamiltonian under consideration. The following derivations are carried out
for the system expanded within the electron–phonon Fock space, which is equivalent to an
effectively noninteracting electron model. We make use of the Ricatti matrix method [27, 28]
as the principal pruning technique to calculate the total transmission, which is given by the
sum of the transmittances over the final phonon and Floquet channels. We shall be interested
in three sequential cases: an AB ring (i) under the effect of only a time-periodic magnetic flux
without electron–phonon interaction, (ii) in the presence of electron–phonon interaction with
only a static flux but without a dynamic flux, and (iii) with all possible kinds of interaction.

2. Method and formulation

As is depicted in figure 1, the system under consideration is composed of a four-site AB
ring (0 � j � 3) and semi-infinite left ( j < 0) and right ( j > 3) leads connected to the ring.
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Figure 1. The system under study: a four-site AB ring connected to one-dimensional semi-infinite
left and right leads. The sites of the ring house the same single Einstein phonon mode. A time-
periodic magnetic flux f (τ ) threads the ring. A dot with a circle describes a site coupled with the
phonon mode.

Each site of the ring is coupled to the same single Einstein phonon mode, with a frequency �.
We conceive that the ring is threaded by a time-periodic magnetic flux of period p = 2π/ω,
expressed in the units of the flux quantum h/e,

f (τ ) = fs + fd cos ωτ, (1)

where τ is the time variable, and fs and fd are, respectively, strengths of static and dynamic
flux. An electron coming from the left lead is affected by both its interaction with the phonons
and the time-periodic flux in the central part. We assume that electron–phonon interaction is
restricted only to the sites of the ring, while the time-periodic flux influences the electron in
the course of hopping from one site to the next within the ring. Both interactions are therefore
described separately in the Hamiltonian of the system,

H (τ ) = HL(R) + HAB(τ ) + Hc (2)

with

HL(R) =
∑

j

ε j c
†
j c j − t

∑

〈 j,�〉
(c†

j c� + H.c.), (3)

HAB(τ ) =
∑

j

[ε j c
†
j c j + �a†

j a j − κc†
j c j (a

†
j + a j)] − t ′ ∑

〈 j,�〉
[eiπ f (τ )/2c†

j c� + H.c.], (4)

Hc = −t0
∑

〈 j,�〉
(c†

j c� + H.c.), (5)

where HL(R), HAB, and Hc represent the Hamiltonians of the left (right) lead, the ring, and
the coupling of the leads to the ring, respectively. The operator c†

j (c j ) creates (annihilates)

an electron at site j with the onsite energy ε j , and a†
j (a j ) is the operator for the creation

(annihilation) of a phonon at site j with the frequency �. The real constants t and t ′
respectively denote the hopping amplitude within the lead and the ring, and t0 denotes that
from leads to the central part. The electron–phonon interaction is mediated via the coupling
strength κ . Finally ‘H.c.’ stands for Hermitian conjugate. Hereafter, for simplicity, all the onsite
energies, ε j , are set to zero.

We note that it is f (τ ) that makes the Hamiltonian (2) time-periodic, i.e., H (τ ) = H (τ +
p). The Floquet theory, then, asserts that the time-dependent Schrödinger equation, i|	̇(τ )〉 =
H (τ )|	(τ)〉, has solutions of the form

|	(τ)〉 = e−iEFτ |φ(τ)〉, (6)

where EF is the Floquet energy ranging from 0 to ω. Since it also obeys the same time
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periodicity, |φ(τ)〉 = |φ(τ + p)〉, the Floquet state |φ(τ)〉 can be readily expanded into a
Fourier series,

|φ(τ)〉 =
∞∑

m=−∞
e−imωτ |φm〉, (7)

After loading all the time dependence on the exponential function, the so-called Floquet side-
band states, |φm〉, can now be further expanded into polaron eigenstates, which are the direct
product of electronic states and the phonon Fock states,

| j, {n}〉 = c†
j

3∏

i=0

(a†
i )

ni

√
ni ! |0〉, (8)

where ni is the number of phonons at site i , {n} indicates the set of ni , i.e., {n0, n1, n2, n3},
and |0〉 is the vacuum state. After carrying out the mentioned expansion, we obtain the assumed
solutions (6) as

|	(τ)〉 =
∑

j,m,{n}
e−i(EF+mω)τ φm

j,{n}| j, {n}〉. (9)

The substitution of this solution into the time-dependent Schrödinger equation yields

H (τ )
∑

j,m,{n}
e−i(EF+mω)τ φm

j,{n}| j, {n}〉 =
∑

j,m,{n}
(EF + mω) e−i(EF+mω)τ φm

j,{n}| j, {n}〉. (10)

In this equation the conserved quantity is the Floquet energy EF, not the total energy, according
to the Floquet theory. It is possible for an electron with energy E = EF + mω, which
determines the Floquet energy within the range [0, ω), to occupy any one of the sidebands
with an energy spacing of ω since all the infinite number of sidebands can be expressed
as Em = EF + mω. It is to be noted, however, that in the electron–phonon interaction case, the
system conserves its total energy E . The energy conservation for the electron–phonon model
is given by E = εin + �

∑
i ni = εout + �

∑
i n′

i , where εin (εout) is the electron energy before
(after) scattering. Hence the energy of the outgoing electron from a channel {n′} to another
one {n} is given by εout = εin + �

∑
i(ni − n′

i ), and including the case in which the electron
occupies the mth Floquet sideband we obtain

εout = EF + mω + �
∑

i

(ni − n′
i ). (11)

Here εout is written, within the nearest-neighbour tight-binding scheme, in terms of km
{n}, i.e.,

the wavevector of the outgoing electron reflected to the left or transmitted to the right,

εout = −2t cos km
{n}. (12)

With the use of the Jacobi–Anger expansion, eiz cos θ = ∑∞
q=−∞ i q Jq(z)eiqθ , we write the left-

hand side of equation (10) as

(HL + HR)|	(τ)〉 = −t
∑

m,{n}
Um(τ )

( −2∑

j=−∞
φm

j+1,{n} +
−1∑

j=−∞
φm

j−1,{n}

+
∞∑

j=4

φm
j+1,{n} +

∞∑

j=5

φm
j−1,{n}

)
| j, {n}〉, (13)

Hc|	(τ)〉 = −t0
∑

m,{n}
Um(τ )(φm

−1,{n}|0, {n}〉

+ φm
0,{n}|−1, {n}〉 + φm

2,{n}|4, {n}〉 + φm
4,{n}|2, {n}〉), (14)
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H (ω)
AB |	(τ)〉 = −t ′

∞∑

�=−∞

∑

m,{n}

3∑

j=0

J�(δd)Um−�(τ )

× (eiδs i�φm
j,{n}| j+, {n}〉 + e−iδs(−i)�φm

j+,{n}| j, {n}〉), (15)

H (�)
AB |	(τ)〉 =

∑

m,{n}

3∑

j=0

Um(τ )φm
j,{n}[�n| j, {n}〉

− κ(
√

n j + 1| j, {(n j + 1)}〉 − √
n j − 1| j, {(n j − 1)}〉)], (16)

with δs(d) = π fs(d)/2, Um(τ ) = e−i(EF+mω)τ , n ≡ n0 + n1 + n2 + n3, and | j, {(ni + 1)}〉 ≡
| j, . . . , ni−1, ni + 1, ni+1, . . .〉. Hamiltonians H (ω)

AB and H (�)
AB describe the effect of the time-

periodic flux and the electron–phonon coupling, respectively. The site j+(−) is the nearest
neighbour within the ring along the clockwise (counterclockwise) direction. Substituting
equations (13)–(16) into (10) and operating with 〈 j ′, {n′}| ∫ dτei(EF+m′ω)τ from the right, we
finally obtain

Em
{n}φ

m
−1,{n} = −tφm

−2,{n} − t0φ
m
0,{n}, (17)

Em
{n}φ

m
0� j�3,{n} = −t0(δ j0φ

m
−1,{n} + δ j2φ

m
4,{n}) −

∞∑

�=−∞
(P�−mφ�

j−,{n} + P∗
�−mφ�

j+,{n})

− κ(
√

n j + 1φm
j,{(n j+1)} + √

n jφ
m
j,{(n j−1)}), (18)

Em
{n}φ

m
4,{n} = −tφm

5,{n} − t0φ
m
2,{n}, (19)

with Em
{n} = EF + mω − �

∑3
i=0 ni and P�−m = t ′ J�−m(δd)eiδs i�−m being the energy in each

channel and the hopping amplitude from the Floquet mode � at site j− to m at j within the
ring, respectively. Equations (17)–(19) are expressed in compact matrix form as

EΦ−1 = −tΦ−2 − t0Φ0, (20)

EΦ0 = V0Φ0 − PΦ3 − P∗Φ1 − t0Φ−1, (21)

EΦ1 = V1Φ1 − PΦ0 − P∗Φ2, (22)

EΦ2 = V2Φ2 − PΦ1 − P∗Φ3 − t0Φ4, (23)

EΦ3 = V3Φ3 − PΦ2 − P∗Φ0, (24)

EΦ4 = −t0Φ2 − tΦ5, (25)

where any amplitude vector Φ j is chosen as (N� + 1)4 phonon submatrices and each such
submatrix has 2Nω + 1 elements, with N� and Nω being the maximum number of allowed
phonons and (positive) Floquet sidebands, respectively, to be included in the numerical
calculation. Eliminating Φ1 and Φ3 among the above equations, we obtain

EΦ0 = Ṽ0Φ0 − P̃02Φ2 − t0Φ−1, (26)

EΦ2 = Ṽ2Φ2 − P̃20Φ0 − t0Φ4, (27)

which, together with equations (20) and (25), designate a linear, nearest-neighbour tight-
binding system with the effective potentials

Ṽ0(2) = V0(2) − P[V3(1) − E]−1P∗ − P∗[V1(3) − E]−1P (28)

and the effective hopping matrices

P̃02(20) = P[V3(1) − E]−1P + P∗[V1(3) − E]−1P∗ (29)

as depicted in figure 2. The solutions in the leads are conventionally written as

φm
j<0,{n} = T m

L,{n}e
ikm

{n}( j+1) + Rm
{n}e

−ikm
{n}( j+1), (30)

φm
j>3,{n} = T m

R,{n}e
ikm

{n}( j−4), (31)

5
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Figure 2. The transformed form of the problem under study in figure 1.

where T m
L,{n} is the probability amplitude of the incoming electron on the left lead, while Rm

{n}
and T m

R,{n} are those of the outgoing electron on the left and right leads, respectively. For future
convenience we also express equations (30) and (31) in matrix form as

Φ j<0 = A j TL + B j R, (32)

Φ j>3 = C j TR, (33)

where A j , B j , and C j are diagonal matrices with the elements eikm
{n}( j+1), e−ikm

{n}( j+1),
and eikm

{n}( j−4), respectively.
Concerning a nearest-neighbour tight-binding problem like the one at hand, one can

easily obtain the transmission and reflection amplitudes by exploiting the Ricatti ratio [27, 28]
method, which is, in this work, generalized to a matrix method. We define a Ricatti matrix Y j

via

Φ j+1 = Y jΦ j . (34)

The application of this definition to the system shown in figure 2, together with
equations (20), (25)–(29), results in a two-point recursion relation, called the Ricatti equation,

Y j−1 = (V j − E − t j, j+1Y j )
−1t j, j−1. (35)

The initial datum needed is obtained with the aid of solutions (32) and (33) as

Y4 = C5. (36)

It is important to notice that the hopping matrices between the two nearest-neighbour central
sites are not equal, i.e., P̃02 	= P̃20. Taking into account the fact that C4 is the identity matrix,
one obtains the expression for TR in terms of TL and R using equations (33) and (35) as

TR = Y2Y0Y−1(TL + R), (37)

and R in terms of TL using equations (32) and (35) as

R = (I − Y−2B−2)
−1(Y−2A−2 − I)TL. (38)

Using equation (38) in (37), one finally obtains the relation TR = tTL, where t is the
transmission amplitude matrix,

t = Y2Y0Y−1(Y−1
−2 − B−2)

−1(A−2 − B−2). (39)

Since, in the numerical calculations, we should keep only those channels that propagate
within the energy bands of the leads, we need to use only a submatrix of the transmission
amplitude matrix (39). We designate such a submatrix by t̃, whose elements t̃αβ give the
transmission amplitude of an electron incident from a channel β ≡ (m, {n}) on the left lead to
another one α ≡ (m ′, {n′}) on the right lead. The transmission coefficient for an electron of
energy E = EF + mω − �n from the left to the right lead is then given by

Tβ(E) =
∑

α

sin kα

sin kβ

|t̃αβ |2 (40)

with kα ≡ km′
{n′} and kβ ≡ km

{n}. At a nonzero temperature T , although we shall not expound
on it in this work, a finite number {n} of phonons will be already excited on each site of the

6
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ring before the scattering, with a probability factor P({n}) = [1 − e−�/T ]4e−�n/T . With the
inclusion of this in the formalism, the total transmission is finally given by

T (E) =
∑

β

P({n})Tβ(E). (41)

The method presented can be easily modified for similar continuous systems with or
without electron–phonon interaction and/or any type of excitation. Two typical examples are
those of Bulgakov et al [29] and Lubin et al [30]. They both consider a mesoscopic ring
threaded by a time-dependent magnetic flux which is periodic in the former and linear in the
latter; their systems do not contain any other interaction like electron–phonon interaction. For
the moment, apart from their time dependence, our method appears capable of dealing with
such continuous systems by simply taking the electron–phonon coupling constant as κ = 0.0
and choosing all hopping constants as t = t ′ = t0 = 1.0 in order to make the tight-binding
model at hand imitate its continuous counterpart. The time-periodicity of magnetic flux in this
work, and in that of Bulgakov et al [29], is harmonic. If we are to be interested in the problem in
which the time-periodic magnetic flux is pulsed, triangular, etc, we can readily use our method
by first Fourier-expanding the magnetic flux, as Faizabadi et al [28] do. What about a magnetic
flux which varies in time linearly, as in the work of Lubin et al [30]? Since time-periodicity
is one of the main ingredients of this work, it seems not quite possible to apply the present
method to such a system. Nevertheless, provided that the exposition of the magnetic flux is
short in time, it may be possible to use the above method in such a system by taking the period
of oscillation ω long enough and again by Fourier-expanding the magnetic flux. In this work
we do not contemplate such issues further.

3. Results and discussion

In this section, we report some representative numerical outcomes for the total
transmission (41) which is calculated using the Ricatti matrix method outlined above. In
calculations the hopping amplitude within the leads sites is set to t = 1.0, and those among
the ring sites and between the ring and leads to t ′ = 0.5 and t0 = 0.2, respectively. We
choose N� = 5 and Nω = 10 which are good enough for the results to converge with sufficient
accuracy, so that the following discussions are all fully reliable.

We initially focus, in the absence of electron–phonon interaction (κ = 0), on the tunnelling
under the effect of only a static flux, fs 	= 0 and fd = 0 (figure 3). This is a necessary, though
not sufficient, test for the Ricatti matrix method; if it is to be useful and effective, it should
lead to the expected results for this case without any erring. When there is no kind of flux at
all, fs = fd = 0, we have only a four-site ring connected to the leads. An electron incident
from the left lead is expected to pass to the right lead through the ring whenever its energy is,
if the coupling t0 between the leads and the ring is sufficiently small, approximately equal to
the eigenenergies En of the isolated four-site ring. This should be so because the smallness
of the coupling t0 and the fact that there exists no prescribed interaction together can induce
only an indiscernible change in the eigenenergies of the ring. Furthermore, again because of
the absence of any interaction, we expect the transmissions at these eigenvalues to be perfect,
i.e., T (En) ≈ 1. Recalling that the eigenenergies of an N-site isolated ring is given, in the
nearest-neighbour tight-binding scheme, by En = −2t ′ cos(2nπ/N) with n = 1, 2, . . . , N , we
expect, for our system, the T (E)-curve to have four perfect transmissions, symmetric around
the origin of the energy axis, at energies E ≈ ±1.0 and 0.0 (doubly degenerate). All these
expected features are clearly illustrated in figure 3(a).

What happens if we now allow a nonzero static flux, of strength fs, to thread the ring? This
time the eigenenergies of an N-site isolated ring are modified to En = −2t ′ cos[2(n+ fs)π/N],

7



J. Phys.: Condens. Matter 19 (2007) 226211 D Shin et al

 0

 0.2

 0.4

 0.6

 0.8

T
(E

)

fs = 0.00

(a)

fs = 0.25

(b)

 0

 0.2

 0.4

 0.6

 0.8

-1.5 -1 -0.5  0  0.5  1  1.5

T
(E

)

E

fs = 0.49

(c)

-1.5 -1 -0.5  0  0.5  1  1.5

E

fs = 0.50

(d)

Figure 3. The total transmission, equation (41), in the absence of electron–phonon interaction for
four different static flux strengths, without any dynamic flux. The Hamiltonian parameters used are
t = 1.0, t ′ = 0.5, t0 = 0.2, ω = 0.3. Note that the total transmission is zero in (d), irrespective of
the energy.

again with n = 1, 2, . . . , N . Then for fs = 0.25, for example, we anticipate four perfect
transmissions, but still no prescribed interaction, at energies E ≈ ±0.38 and ±0.92, as shown
in figure 3(b). We note that a nonzero flux lifts the degeneracy of the eigenenergy E1 = E3 =
0.0 seen in the previous case of zero flux (figure 3(a)). The form of the eigenenergy equation for
this case suggests that at fs = 0.5, for instance, we should see two perfect transmissions, both
of them doubly degenerate, at energies E ≈ ±1/

√
2 ≈ ±0.71. As is seen in figure 3(d), it turns

out, however, that, at fs = 0.5, no transmission peak at all appears, regardless of the electron
energy. This phenomenon is referred to as total reflection [31–33], and is due to the perfect
interference taking place when the electron wavefunctions in the upper and lower parts of the
ring are completely cancelled at the point of the ring–lead junction, site j = 2 in our system;
the condition for such a total reflection in an AB ring is that the flux strength fs be half-integral
numbers [33]. This feature is more striking than may be perceived at first glance. Except for
the total reflection occurrences, we now realize that a four-site ring threaded by a constant
magnetic flux always possesses four eigenenergies, though some of them may be degenerate;
corresponding to them are four perfect transmissions. This fact holds even when there happens
to be a slight shift in fs from a half-integral value at which a total reflection takes place. In
figure 3(c) is seen an example of such a situation where the two nearly perfect transmission
peaks which are lost in figure 3(d) are recovered for a representative value of fs = 0.49
around E ≈ ±0.71. These are not literally perfect transmissions since the value fs = 0.49
is too close to the ‘singular’ point fs = 0.5, though it acts consummately well to make the
missing transmission peaks reappear.

The results presented in the preceding paragraphs open up useful possibilities for an AB
ring with a static flux to be utilized as a switch in the not-too-distant future quantum electronics
applications. For example, the ‘circuit’ associated with figure 3(a) can be used as a three-
way switch in the sense that it allows a current to flow only three specific electron energies;

8



J. Phys.: Condens. Matter 19 (2007) 226211 D Shin et al

 0

 0.2

 0.4

 0.6

 0.8

T
(E

)

fs = 0.00

(a)

fs = 0.25

(b)

 0

 0.2

 0.4

 0.6

 0.8

-1.5 -1 -0.5  0  0.5  1  1.5

T
(E

)

E

fs = 0.49

(c)

-1.5 -1 -0.5  0  0.5  1  1.5

E

fs = 0.50

(d)

Figure 4. The same as figure 3, but with a dynamic flux of strength fd = 0.2. Note, in (d), the
reappearance of the main transmission peaks which were lost in figure 3(d).

otherwise it blocks the current. It is to be noted that the width of transmission peaks may
be adjusted according to the magnitude of the coupling t0 between the ring and the leads.
Hence the energy range in which the current flows may be predetermined in compliance with
particular needs, and the switch’s oversensitivity to the energy is thus prevented. Likewise,
the circuits associated with figures 3(b) and (c) may be exploited as a four-way and two-way
switch, respectively. The circuit associated with figure 3(d), along with figure 4(d), seems to
offer a similar switch behaviour, this time according to the magnitude of the flux strength fs.
Its oversensitivity to fs might not permit this circuit to operate properly as a switch, however.

A nonzero dynamic flux is now allowed in order to take a close look at the photon-assisted
tunnelling taking place in the present AB system (figure 4). We are still excluding electron–
phonon interaction, κ = 0. We begin with figure 4(a), the case in which we apply only a
dynamic flux, without a static flux. What would we expect if we were dealing with a simpler
system in which there was a single site at the central region, instead of an AB ring, that was
driven by a time-periodic potential of period ω? The interaction with the central site would then
cause the electron to gain or lose energy quanta ω, or, say, photons, and the scattered electron
would have an energy dictated by the Floquet states E ± nω. As a result, we would expect that
the central transmission peak (here we assumed that the central onsite energy was zero) had
satellite peaks appearing symmetrically at positions E ≈ ±mω, and that their number would
be increasing with the increasing dynamic potential strength, but with decreasing heights at the
same time. We now return to our present problem. Although the conceptual problem above
seems somewhat different in nature, there is no reason not to expect the same features to come
into view, and similar satellite peaks might be expected to appear at energies E ≈ En ± mω,
where En is the eigenenergy of the isolated AB ring without a dynamic flux. Loosely speaking,
these additional satellite peaks represent the emission or absorption of a photon; hence that part
of the paper’s title ‘photon-assisted tunnelling’ finds its meaning. (The reader is also referred
to the continuum AB ring cases [29, 32–34] to observe similar characteristics.) We indeed
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see these expected behaviours in figure 4(a): there appear four satellite peaks only around the
central transmission peak, symmetrically distributed at locations E ≈ ±ω and E ≈ ±2ω;
the closer to the main peak a satellite peak is, the bigger its height is. We do not see more
satellite peaks because the strength of dynamic flux is too small for the electron to be scattered
to (absolutely) higher Floquet states. We notice the slight decrease in the height of the central
transmission peak, an expected behaviour, since this time, contrary to the previous bare and
only static flux cases, we now do have electron–photon interaction; we no longer see any perfect
transmission.

The only seeming peculiarity about figure 4(a) with the results just presented is that
we do not observe any satellite peaks around the outermost main transmission peaks; they
remain stiff, even for a stronger dynamic flux (not shown). (This happening is exclusive to
figure 4(a), not seen in figures 4(b)–(d), among the cases considered in this work.) Although
the concrete reason for this somewhat unexpected outcome remains elusive for the time being;
a plausible account might be provided by analysing the phase of the electron wave, like that
in the analogous continuous AB ring [32, 33]. To do so we make use of the eigenenergy
formula for an isolated N-site ring in the nearest-neighbour tight-binding scheme, introduced
before, written as En = −2t ′ cos(2nπ/N) = −2t ′ cos(kn�) = −2t ′ cos(2π�/λn), where λn

is the characteristic wavelength. Here we introduced � being the quarter circumference of
the ring, which we take as being unity in this work; it is the nearest-neighbour distance
between any two sites in the ring. With t ′ = −0.5 and N = 4 for the system under study,
it becomes En = − cos(nπ/2) = − cos(2π�/λn). Therefore, the stiff peaks under question
are located at energies E2 ≈ 1.0 and E4 ≈ −1.0, as shown in figure 4(a), which correspond
respectively to electron wavefunctions with wavelengths λ2 = 2� and λ4 = �. On the other
hand, the position of the central transmission peak is E1 = E3 ≈ 0.0 (doubly degenerate),
corresponding to λ1 = 4� or λ3 = 4�/3. We now realize that whenever the wavelength λ

happens to be an integral multiple of �, the nodes of the electron wavefunction and the sites
of the ring are perfectly matched. Based on this fact, we may surmise that it is somehow
difficult for a dynamic flux to disturb an electron wavefunction with a wavelength matched
perfectly to the sites of the ring. Consequently, it is highly likely that the cases of λ1, λ2,
and λ4 (indistinguishable in figure 4(a) from the λ3 case) do not give rise to any satellite peaks;
the additional channels for the corresponding main transmission peaks cannot be opened even
under a dynamic flux with a stronger strength. It is only the λ3 = 4�/3 case, with unmatched
wavelength, that yields satellite peaks. The reader should notice that, contrary to the analogous
continuous AB ring where the perfect matching takes place only in the two junction points of
the ring and the leads [32, 33], in the system under study, shown in figure 1, perfect matching
occurs at all four sites, i.e., even at sites 1 and 3.

All the presumed features, most of which are seen in figure 4(a), are markedly
distinguished in figures 4(b)–(d), where we also have a static flux in addition to the already
available dynamic flux. Each main transmission peak now possesses its own satellite peaks,
although, in figure 4(b), it seems at first sight fairly difficult to determine which satellite peak
is the offspring of which main transmission peak. We are now well aware of the substantial
reduction of the main transmission peaks in all graphs. Because of the dynamic flux with not-
so-strong strength fd, only the first-order Floquet excitations are clearly seen; the second-order
ones are also visible in figure 4(b), but they are barely discernible in figures 4(c) and (d). The
most striking of all is demonstrated in figure 4(d) where there appear not only the expected
satellite peaks, but also the main transmission peaks, at E ≈ ±0.71, which were missing
in figure 3(d), because of the half-integral fs value leading to a perfect reflection. As we
mentioned above, even a very small deviation from fs = 0.5 destroys the perfect reflection,
giving rise to a significant change in the total transmission. It plainly follows from figure 4(d)
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Figure 5. The total (solid lines) and elastic (dashed lines) transmissions at zero temperature in the
presence of electron–phonon interaction, without a dynamic flux. We choose κ = 0.1 and � = 0.4;
the remaining parameters are the same as those in figure 3. It is to be noticed that the elastic
transmission is zero in (b); hence, no graph with dashed line is visible there. Also, the scales of the
vertical axes are different.

that although a static flux with a half-integral strength fs is applied, perhaps to avoid any
transmission resonance, the dynamic flux keeps open at the same the main transmission
channels as well as satellite pseudochannels. The fact of matter is that this special occurrence
proves the oversensitivity of the circuit associated with figure 3(d) for the only-static-flux case,
as we pointed out above.

We next study the cases in which electron–phonon interaction is considered with and
without a static flux, but excluding, for the moment, any dynamic flux, fd = 0; we investigate
the total and elastic tunnelling through the AB ring at zero temperature. Here we mean with
‘elastic scattering’ that the number of phonon quanta excited on each of the central sites
of the ring are zero both before and after the scattering, because of the zero temperature.
Figure 5 shows the total and elastic transmissions as a function of the electron energy for
the special cases fs = 0.0 and 0.5. We first observe that the demonstrated features are
entirely similar to those of Haule and Bonc̆a [20], proving the consistency of both methods.
It seems sufficient to provide only a brief summary. It follows from figure 5(a) that satellite
resonances are located at E ≈ En + mω, where m is a positive integer and En is, in
general, the eigenenergies for an isolated N-site ring in the nearest-neighbour tight-binding
scheme; to repeat, En = −2t ′ cos(2nπ/N). These additional satellite peaks signify, this
time, phonon emissions or absorptions; hence follows the first part of the paper’s title ‘phonon-
assisted tunnelling.’ Because no phonon exists for absorption at the sites of the ring before the
scattering, there is no satellite peak, corresponding to phonon absorption, on the left of the main
transmission peaks, so the m that appears in the above formula is positive. We see only two
satellite peaks, corresponding to phonon emission, on the right of the central transmission peak
(though the second one requires a powerful eye) and only one on the right of the outermost main
transmission peaks, since the strength κ of the electron–phonon coupling is too small for the
electron to cause more phonon emissions. We also note the slight decrease in the height of the
main transmission peaks, similar to that encountered above in the photon-assisted tunnelling.
As expected, with increasing κ value, the number of satellite peaks increases, and the decrease
in the heights of the main transmission peaks becomes more pronounced (not shown). Finally,
although the difference is hardly discerned, a comparison of the total and elastic transmissions
in figure 5(a) reveals that there is always a significant probability for an electron to cause higher-
order phonon emissions, no matter how small the coupling strength κ is.

As we mentioned before, in the absence of electron–phonon interaction, the total reflection
phenomenon, i.e., zero transmission, is encountered for a static flux of strength fs = 0.5,
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Figure 6. The total (solid lines) and elastic (dashed lines) transmissions at zero temperature in the
presence of electron–phonon and electron–photon interactions at two different Floquet frequencies.
The pair (p, q) in (a) designates the number of excited phonon, p, and photon, q, quanta. We
choose � = 0.4, fs = 0.5, fd = 0.05, and κ = 0.1; the remaining parameters are the same as those
in figure 3. It is to be noticed that the scales of the vertical axes are different.

irrespective of the electron energy. The inclusion of electron–phonon interaction gives rise
to a finite, though small, total transmission, as is seen in figure 5(b). Noting that the elastic
contribution is exactly (within the numerical precision imposed) zero in this case, we can draw
the conclusion that all the contributions to the total transmission in this case come only from
inelastic processes (i.e., sequential phonon emissions and re-absorptions) via the additional
phonon channels [19].

We lastly work out the case in which the effects of both electron–phonon and electron–
photon interactions on the transmission properties of the system are investigated. Put in an other
way, all the parameters of the system are now at work; therefore, all the previously observed
individual effects are expected to come additively together to reshape the transmission curve.
Figure 6(a), where we plot the total and elastic transmissions as a function of the electron
energy, certifies these expectations. For a better appreciation, we designate by the pair (p, q) a
general phonon–photon channel, where p (q) is the number of excited phonon (photon) quanta
on any site of the AB ring. We focus on the left main transmission peak and its satellite peaks
in figure 6(a). If only a static flux of strength fs = 0.5 were applied, we would see a perfect
reflection, figure 3(d). As is seen in figure 4(d), the inclusion of a oscillating dynamic flux then
recreates the missing main transmission peaks, and creates the associated satellite peaks. In
figure 6(a), the left main transmission peak is indicated by channel (0, 0), and the satellite peaks
by (0,−1) and (0, 1), which refer respectively to the pure absorption and pure emission of one
photon quantum. We note from the behaviour of the dashed line that these two satellite peaks
are due to elastic photon absorption–emission processes. The satellite peaks (1, 0) and (2, 0)

indicate pure one- and two-phonon inelastic emission processes, respectively. Via the electron–
photon interaction, these pure phonon processes are accompanied by the additional hybrid
satellite peaks; examples are the peaks (1, 1) and (1,−1), which are at a distance ±ω from
the pure phonon peak (1, 0). The trend should now be obvious; to sum up, the presence of
both interactions creates many new channels, or states, within the band of the electron, whose
locations are given by E ≈ En + p� ± qω, where En gives the eigenenergies of an isolated
four-site ring, for the present study, in the nearest-neighbour tight-binding scheme.

We consider, finally in this work, the case in which we have the same numerical magnitude
for the frequency of the time-periodic flux and that of the phonon field, ω = � = 0.4. As is now
readily expected, the positions of the satellite photon peaks coincide with those of the phonon
peaks on the right side of the main transmission peaks, as figure 6(b) clearly illustrates. We
notice how beautifully the channels (1, 0) and (0, 1) in figure 6(a) combine into one phonon–
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photon satellite peak in figure 6(b), which now has a significantly enhanced height. Perhaps
more interestingly, since the photon satellite peak (1,−1) coincides with it, the height of the
main transmission peak (0, 0) is augmented by a factor of more than two. The results presented
in figure 6 constitute a compact summary of the present work; hence follows readily the paper’s
title ‘phonon–photon-assisted tunnelling.’

4. Summary and conclusions

We investigate the phonon–photon-assisted tunnelling through a four-site AB ring, whose sites
are coupled to electron–phonon interaction, which is threaded by a time-periodic flux. We offer
the use of the Ricatti matrix method, a nonperturbative numerically exact method to obtain
the transmission properties of the system under question. We combine the Floquet scattering
approach of Shirley and Sambe [23, 24] (to deal with the time-periodic flux), the mapping
scheme of Bonc̆a et al [19, 20] (to handle electron–phonon interaction), and, in turn, the Ricatti
ratio method of Heinrichs and Faizabadi et al [27, 28] (to prune the system) into a single
effective matrix method. As a whole, the method presented in this work makes the interacting
Hamiltonian transform to an effectively noninteracting one, and it thus permits the Floquet
theory to be applicable to a system even with phonon degrees of freedom.

After a description of the problem, its formulation along with a detailed derivation of the
method to solve the time-dependent Schrödinger equation associated with the total Hamiltonian
of the system are given. In order to test the method, the tunnelling under the effect of only a
static flux without electron–phonon interaction is first considered and all the expected outcomes
are recovered. It is seen that a static flux lifts the degeneracy of the eigenenergies of the ring,
and moves or combine these eigenenergies. At a static flux of half-integral strength fs, the
total reflection phenomenon is observed irrespective of the electron energy. The missing main
transmission peaks are observed to reappear when even there is a very small shift in fs from a
half-integral value. These results imply that such an AB system with only a static flux might
be fully exploited as a nanoswitch in near-future quantum electronics. A dynamic flux is
then applied to the system, again without electron–phonon interaction. The phonon-assisted
tunnelling is seen at work and there appear satellite photon peaks symmetrically around main
transmission peaks. In a special case, some main transmission peaks remain stiff, i.e., the
expected photon satellite peaks around them do not appear, even for a stronger dynamic flux.
It is conjectured that whenever the nodes of the electron wavefunction and sites of the ring
are perfectly matched, the electron wavefunction is unwilling to give birth to any satellite
photon peak. It is later noticed that, although a static flux with a half-integer strength is
applied, a dynamic flux keeps open the lost main transmission channels as well as satellite
photon channels. Next, electron–phonon interaction is considered at zero temperature with and
without static flux, excluding any dynamic flux. All the previously reported literature results
are recovered, proving the accuracy and efficiency of the present method. Phonon satellite
peaks signifying phonon emission and absorption precesses are observed. It is found that
there is always a significant probability for an electron to cause high-order phonon emissions,
no matter how small the electron–phonon coupling strength is. It is seen that the inelastic
processes of sequential phonon emissions and re-absorptions play a substantial role in forming
the transmission properties of the system. Finally, both electron–phonon and electron–photon
interactions are included, and all the previously observed individual effects are seen to come
additively together to affect the system. The inclusion of both interactions creates many
additional channels, or satellite peaks, or states within the band of the electron, whose locations
are dictated by E ≈ En + p� ± qω, where En is, in general, the eigenenergies of an
isolated N-site ring, in the nearest-neighbour tight-binding scheme. In the special case in
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which frequencies of the time-periodic flux and phonon field are equal in magnitude, satellite
phonon and photons peaks coincide and thus enhance the effect of each other. Similarly, a main
transmission peak may merge with a photon and/or phonon satellite peak, leading to a much
more strong transmission probability at a special electron energy which can easily be adjusted
by tuning the strength of static flux. It would be interesting to study, with the use of the method
presented in this work, a double AB ring system whose rings are threaded by a couple of out-
of-phase time-periodic dynamic fluxes so that one practically obtains a quantum electron pump
system. It would be even more appealing, and thought-provoking, to include electron–phonon
interaction in such an electron pump. We are currently working on both.
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